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Abstract. Using the Lie algebraic approach we have derived the exact diffusion propagator of the Fokker-
Planck equation with a time-dependent variable diffusion coefficient and a time-dependent mean-reverting
force between two absorbing boundaries. The exact diffusion propagator not only enables us to study
the time evolution of the corresponding stochastic system, but the knowledge of the propagator can also
provide a benchmark for testing approximate numerical or analytical procedures. Furthermore, the Lie
algebraic method is very simple and could be easily extended to the more general Fokker-Planck equations
with well-defined algebraic structures.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
02.50.Ey Stochastic processes – 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.)

The Fokker-Planck equation (FPE) with variable coeffi-
cients in one dimension:

∂P (x, t)
∂t

=
∂

∂x
[A(x, t)P (x, t)]+

∂2

∂x2
[B(x, t)P (x, t)] , (1)

provides a very useful tool for modelling a wide vari-
ety of stochastic phenomena arising in many areas of
physics, chemistry, biology, engineering and finance [1–3];
for instance, the problem of diffusion in colloids, short-
time chemical reactions, self-propelling particles, plasma
physics, financial markets and quantum chaos [4–9]. In
this communication we are interested in applying the Lie
algebraic method to derive the propagator of the FPE:

∂P (x, t)
∂t

=
{

1
2
σ(t)2xβ ∂2

∂x2
+ µ(t)x

∂

∂x
+ µ(t)

}
P (x, t)

(2)
with two absorbing boundaries, and investigate the time
evolution of the solution. Here 0 ≤ β < 2, x ≥ 0 and
µ(t) > 0. This equation represents the well-known “con-
stant elasticity of variance” model of option pricing with
time-dependent parameters in the field of finance [10]. In
this model we have a time-dependent variable diffusion co-
efficient and a time-dependent mean-reverting force. Such
a model can be useful to study the problem of a Brownian
walker with a space-dependent diffusion coefficient, which
could be realized experimentally by trapping particles be-
tween two nearly parallel walls [11].

a e-mail: eflo@phy.cuhk.edu.hk

Introducing a simple change of variables: y =
√

x2−β ,
equation (2) can be recast in the following form:

∂u(y, t)
∂t

=
1
8
σ̃(t)2

∂2u(y, t)
∂y2

+
1
2

[
µ̃(t)y − (4 − β)σ̃(t)2

4(2 − β)y

]

× ∂u(y, t)
∂y

+
[
(4 − β)σ̃(t)2

8(2 − β)y2
+ µ(t) − µ̃(t)

2

]
u(y, t)

≡ H(t)u(y, t) , (3)

where σ̃(t) = (2 − β)σ(t), µ̃(t) = (2 − β)µ(t) and
u(y, t) = yP (x, t). This equation represents a general-
ization of the Fokker-Planck equation associated with
the well-known Rayleigh process [2], which involves a
time-dependent diffusion coefficient and a time-dependent
anharmonic oscillator potential V (y, t) = [µ̃(t)/4] y2 −{[

(4 − β) σ̃(t)2
]
/ [8 (2 − β)]

}
ln y. It is not difficult to

show that the operator H(t) can be rewritten as follows:

H(t) = a1(t)K+ + a2(t)K0 + a3(t)K− + b(t) (4)

where

K− =
1
2

[
∂2

∂y2
− 4 − β

(2 − β)y
∂

∂y
+

4 − β

(2 − β)y2

]

K0 =
1
2

(
y

∂

∂y
− 1

2 − β

)
, K+ =

1
2
y2

a3(t) =
1
4
σ̃(τ)2, a2(τ) = µ̃(τ)

a1(τ) = 0, b(τ) = − 1 − β

2(2 − β)
µ̃(τ) − µ(τ). (5)
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The operators K+, K0 and K− are the generators of the
Lie algebra su(1,1) [12]:

[K+, K−] = −2K0, [K0, K±] = ±K±. (6)

We may define the evolution operator U(τ, 0) such that

u(y, t) = exp
[∫ t

0

dt′ b(t′)
]
· U(t, 0)u(y, 0). (7)

Inserting equation (7) into equation (3) yields the evolu-
tion equation

∂

∂t
U(t, 0) = HI(t)U(t, 0), U(0, 0) = 1 (8)

with
HI(t) = a1(t)K+ + a2(t)K0 + a3(t)K−. (9)

Since the su(1,1) algebra is a real “split 3-dimensional”
simple Lie algebra, the Wei-Norman theorem states that
the evolution operator U(t, 0) can be expressed in the
form [13]

U(t, 0) = exp [c1(t)K+] exp [c2(t)K0] exp [c3(t)K−] (10)

where the coefficients ci(t) are found to be given by (see
Appendix A) [14]

c1(t) = 0, (11)

c2(t) =
∫ t

0

µ̃(t′) dt′, (12)

c3(t) =
1
4

∫ t

0

σ̃(t′)2 exp [c2(t′)] dt′. (13)

Accordingly, we obtain [15]

u(y, t) = exp
[∫ t

0

dt′b(t′)
]

exp [c2(t)K0]

× exp [c3(t)K−] u(y, 0)
⇒ ũ(y, t) ≡ exp [γK+]u(y, t)

= exp
[∫ t

0

dt′b(t′)
]

exp [γK+] exp [c2(t)K0]

× exp [c3(t)K−] exp [−γK+] ũ(y, 0)

= exp
[∫ t

0

dt′b(t′)
]

exp [γK+]

× exp
{
−γ exp [c2(t)]

1 + γc3(t)
K+

}

× exp {[c2(t) − 2 ln |1 + γc3(t)|] K0}

× exp
[

c3(t)
1 + γc3(t)

K−

]
ũ(y, 0), (14)

where γ is a real adjustable parameter.
Without loss of generality, we suppose that ũ(y, 0) =

y(α+1)/2v(y, 0), where α = (4 − β)/(2 − β) and

v(y, 0) =
∞∑

n=1

2Jω

(
yωn

y
L

)
L2J2

ω+1(yωn)

∫ L

0

dy′y′Jω

(
yωn

y′

L

)
v(y′, 0),

(15)
for ω ≡ (α − 1)/2 > −1 and 0 < y < L. Here yωn denotes
the nth zero of the Bessel function Jω of the first kind

of order ω. Then it is not difficult to show that u(y, t) is
given by

u(y, t) =
∫ L

0

dy′ K(y, t; y′, 0) u(y′, 0) (16)

where

K(y, t; y′, 0) =
∞∑

n=1

2y′

L2J2
ω+1(yωn)

(
y

y′

)ω+1

×
exp

[
c2 (t) /2 +

∫ t

0 dt′b(t′)
]

|1 + γc3(t)|
× exp

{
− γ exp [c2 (t)]

2 [1 + γc3(t)]
y2

}

× exp
{
− c3(t)

2 [1 + γc3(t)] L2
y2

ωn

}

× Jω

(
yωn

exp [c2 (t) /2]
|1 + γc3(t)|

y

L

)
Jω

(
yωn

y′

L

)

× exp
[
1
2
γy′2

]
. (17)

Here we have made use of the fact that
y(α+1)/2J(α−1)/2(yν) is an eigenfunction of the oper-
ator K− with the eigenvalue −ν2/2 as well as the
well-known relation

exp
(

ηy
∂

∂y

)
f(y) = f (y exp(η)) . (18)

It should be noted that at time t ≥ 0 the kernel
K(y, t; z, 0) vanishes at y = L |1 + γc3(t)| exp [−c2 (t) /2].
That is, we have derived the kernel of equation (3)
with an absorbing barrier moving along the trajectory
y∗(t) = L |1 + γc3(t)| exp [−c2 (t) /2] parametrized by the
real adjustable parameter γ. Consequently, such a sys-
tem is bounded by two barriers, namely a fixed barrier
at y = 0 and a moving barrier along the trajectory y∗(t)
parametrized by the real parameter γ.

In order to simulate the general problem of a Brow-
nian walker with a space-dependent diffusion coefficient,
which is trapped between two fixed parallel plates, we shall
choose an optimal value of the adjustable parameter γ in
such a way that the integral

∫ τ

0

[y∗(t) − L]2 dt

is minimum. In other words, we try to minimize the devi-
ation of the moving barrier from the upper fixed barrier
by varying the parameter γ. Here τ denotes the time at
which the solution of the FPE is evaluated. Making use
of the maximum principle for parabolic partial differential
equations [16], we can also determine the upper and lower
bounds for the exact solution. It is not difficult to show
that the upper bound can be provided by the solution of
the FPE associated with a moving barrier whose y∗(t) is
always larger than or equal to L for the duration of inter-
est. Similarly, the solution of the FPE associated with a
moving barrier whose y∗(t) is always smaller than or equal
to L for the duration of interest can serve as the lower
bound. Furthermore, the upper and lower bounds can be
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systematically improved by adjusting the corresponding
values of the parameter γ.

In summary, we have investigated the algebraic struc-
ture of the Fokker-Planck equation with a time-dependent
variable diffusion coefficient and a time-dependent mean-
reverting force between two absorbing boundaries. Us-
ing the Lie algebraic approach we have derived the
exact diffusion propagator for this type of Fokker-
Planck equations. The exact diffusion propagator not only
enables us to study the time evolution of the correspond-
ing stochastic system, but the knowledge of the propa-
gator can also be useful as a benchmark to test approx-
imate numerical or analytical procedures. Such a model
could be useful to study the general problem of a Brow-
nian walker with a space-dependent diffusion coefficient.
We are also able to show that this model is related to
the Fokker-Planck equation with a time-dependent diffu-
sion coefficient and a time-dependent anharmonic poten-
tial of the form V (x, t) = 1

2ξ(t)x2 + κ(t) ln x, which has
been widely applied to model different physical and bio-
logical phenomena, e.g. the study of neuron models [17]
and stochastic resonance in monostable nonlinear oscilla-
tors [18]. Furthermore, the Lie algebraic method is very
simple and could be easily extended to the more general
Fokker-Planck equations with well-defined algebraic struc-
tures.

Appendix A: Derivation of equations (11–13)

Differentiating U(t, 0) in equation (10) with respect to
time t, we obtain

∂

∂t
U(t, 0) = [h+(t)K+ + h0(t)K0 + h−(t)K−] U(t, 0)

(A.1)
with

h+(t) =
dc1

dt
− c1

dc2

dt
+ c2

1 exp(−c2)
dc3

dt

h0(t) =
dc2

dt
− 2c1 exp(−c2)

dc3

dt

h−(t) = exp(−c2)
dc3

dt
· (A.2)

Then, substituting equations (9, 10, A.1) and (A.2) into
equation (8), and comparing the two sides, we have after
simplification

dc1(t)
dt

= a3(t)c2
1(t) + a2(t)c1(t) , c1(0) = 0 (A.3)

c2(t) =
∫ t

0

[2a3(t′)c1(t′) + a2(t′)] dt′ (A.4)

c3(t) =
∫ t

0

a3(t′) exp [c2(t′)] dt′. (A.5)

Equation (A.3), which is just a Bernoulli equation, is
the equation we have to solve first to determine c1(t), and
obviously the only admissible solution is the trivial so-
lution c1(t) = 0 since it is the only one satisfying the
initial condition c1(0) = 0. Once c1(t) is determined, c2(t)
and c3(t) can be obtained readily by direct integration, as
given in equations (12) and (13).
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